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Determination of the Polarization Vectors of Lattice Waves by Anomalous Neutron Scattering 
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(Received 24 August 1970) 

The Argand diagram representation of coherent inelastic scattering (one-phonon process) is presented. 
This is used to show that IF(H,q)I ~ IF(lq,/1)l in a non-centrosymmetric two-atom structure when an 
anomalous scatterer is present and IF(H,q)I ¢ IF(H,~)I even in a NaCl-type structure when both atoms 
are normal scatterers. This paper describes how the polarization vectors of lattice waves may be experi- 
mentally determined in a crystal containing a nuclide which scatters thermal neutrons anomalously. 
The procedures for the determination of the polarization vectors in centrosymmetric and non-centro- 
symmetric structures when they are, in general, complex and for a Bravais lattice when they are always 
linearly polarized have also been presented. It is shown that the 'phase problem' associated with the 
determination of the initial phase of elliptic motion can, in principle, be solved by using anomalous 
neutron scattering. 

1. Introduction 

The importance of experimentally determining the 
polarization vectors of lattice waves has been recog- 
nized by many authors (Brockhouse, 1964; Dolling & 
Woods, 1965). Unlike the eigenvalues of the dynamical 
matrix, the components of the polarization vector are 
always linear functions of the elements of the dynamical 
matrix. Thus the determination of the interatomic 
force constants through the measured frequencies and 
the polarization vectors, provides an advantage over 
the method of non-linear fitting of the dynamical 
equation to the observed frequencies. In some specially 
simple cases when q, the wave-vector of the lattice 
wave lies in a symmetry plane or is along a symmetry 
axis, the direction of the polarization vector may be 
determined from symmetry considerations. This is 
probably the reason why most of the experiments on 
inelastic scattering are confined to wave propagation 
along a symmetry direction. We shall concern our- 
selves with wave propagation along a general direction 
in the crystal and attempt to obtain the components 
of the polarization vector from the observed intensity 
data. Recently Cochran (1968) suggested the method 
of inelastic Patterson synthesis to extract information 
about the polarization vectors and discussed the 
inherent difficulties involved in interpreting this 
synthesis. Only at q=0,  has the synthesis a simple 
interpretation. Further, this method requires the col- 
lection of the intensity data of the coherent one-phonon 
scattering near a large number of reciprocal-lattice 
points and thus poses a number of experimental prob- 
lems. Ramaseshan & Viswanathan (1970) showed that 
the breakdown of Friedel's law in inelastic scattering, 
in a crystal which has at least one anomalous scatterer 
can yield information regarding the polarization vectors 
of lattice waves. In this paper, the relevant experimental 
data to be collected and the mode of extracting the 
components of the polarization vector are discussed. 

Further, the Argand diagram representation of the 
coherent one-phonon process in the presence and ab- 
sence of anomalous neutron scattering is presented. This 
representation simplifies the writing down of the struc- 
ture factors in complex structures and helps in visual- 
izing the differences in structure factors under various 
experimental conditions. 

2. Anomalous neutron scattering 

Peterson & Smith (1961, 1962) showed that thermal 
neutrons are scattered anomalously by some nuclides 
like Cd 113, Sm 149, EH TM and Gd ]57 leading to the viola- 
tion of Friedel's law in non-centrosymmetric structures. 
The anomalous neutron scattering length of an atom 
B has the form 

b~ = b~ o + b~ + ib~ (1) 

where bB0 represents the normal scattering length 
while b~ and b~ correspond to dispersion terms. A 
typical dispersion curve ofb'  and b" for Cd 113 is given in 
Fig. 1. b~ is always positive whereas b~ may take both 
positive and negative values, a behaviour markedly 
different from that in X-ray scattering. In the Figures 
that illustrate this paper, b~ has been taken as positive. 

Ramaseshan (1966) pointed out that since b'B/bBo~_ 
4"0-5"0 and b~/bBo _~ 8, almost two orders of magnitude 
larger than the corresponding quantities in X-ray scat- 
tering, anomalous neutron scattering may well be used 
to solve large structures provided accurate measure- 
ments of the intensity is possible. The method of doing 
this was worked out by Singh & Ramaseshan (1968). 
These techniques used in structural crystallography 
may be directly applied to yield the components of the 
polarization vector, since the coherent inelastic scat- 
tering results from the interference of wavelets from a 
crystal the equilibrium configuration of which is per- 
turbed by a propagating lattice wave. 



T. G. RAMESH AND S. RAMASESHAN 333 

3. Descr ipt ion of  the polarizat ion vector and coherent 
one-phonon process  

For the discussion that follows, it is necessary to 
describe briefly the polarization vector and its relation- 
ship to the coherent one-phonon process. We follow 
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Fig. 1. Variation of b' and b" with wavelength for Cd 113 

the general notation used by Maradudin, Montroll & 
Weiss (1963). Consider a crystal with a unit cell having 
r atoms. The position vector of the Kth atom in the lth 
unit cell is given by 

x(/)=x(l)+ x(,O 
x(/) defines the origin of the /th unit cell relative to 
some origin in the crystal and x(x) defines the position 
of the ~cth atom relative to the cell origin. We shall 
confine ourselves to the 'harmonic approximation'. 
Then the equation of motion of the crystal is given by 

M,ji=(hc)= - ~.. ~=/~(lx; lq¢') u/j(l't¢') 
l '  K'fl 

where 0¢,fl=1,2,3 correspond to the three cartesian 
components and n(/x) denotes the displacement of the 
xth atom in the/ th  cell from the equilibrium configura- 
tion. We seek a solution where the displacements are 
of the form 

u.j(0) 
u(lx)= ~ ~ e(t¢]~) exp i {q. x (~ ) -  coj(q)t }. 

qi 

u,j(0) represents the scalar amplitude, directly related 
to the energy of the mode in thermal equilibrium, and 
does not enter the dynamical equation, e(xl~) denotes 
the eigenvector of the Kth atom for the mode (~). 
Thus, the equations of motion could be written as 

co~(q) e=(xll)=- ~ D=.8(xx'lq) eB(K'II), 
K',8 

j =  1,2, . . .  3r; e,fl= 1,2,3. 

D=eQcK'Iq) are the elements of the 'dynamical matrix' 
which are related to the inter-atomic force constants 
~,p(Ox; l ' - I x ' )  through the relation, 

H'x°(A) 
R'x°(A) 

%% 
g'x°(B) 

B' 

Fig. 2. Bragg reflexion - two atom structure; normal scattering. 
OA=OA'=b.4 exp { -  W.4}, AB=A'B'=bB exp { -  Wn}; 
I F(H) I = IF(A) I. 

q 

x e x p - i  {q. x( / '~U)-x(/)}.  

The coefficients e~(xlD for a given q and j and for 
different atoms in the unit cell are regarded as the 
components of a 3r dimensional vector of unit magni- 
tude called the 'polarization vector'. The enumeration 
of these coefficients gives us the relative amplitudes of 
the different atoms in the unit cell. 

The eigenvectors satisfy the orthonormality condi- 
tion 

e~,(Kl~) e~(tcl~,) = 5 , ,  . (6) 
KN 

Since the elements of the dynamical matrix are complex 
quantities, the eigenvectors are in general complex. 
Only when each atom in the structure lies at a centre 
of inversion, the dynamical matrix could be trans- 
formed into a real symmetric matrix, and the corre- 
sponding eigenvectors would be real. The significance 
of the eigenvectors being complex is that the motion 
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of an atom under the influence of a lattice wave is 
elliptic. 

We write e(xl~) = A +  iB 

whereA= a2 a n d B =  b2 . 
a3 b3 

(7) 

Thus the six components of the real vectors A and B 
specify the elliptic motion of a given atom. In a two 
atom structure and for q in a general direction, we 
require twelve components to describe completely the 
elliptic motions of the two atoms. At q=0,  for all 
structures, the elliptic motion degenerates into a linear 
one and the initial phase of motion will be either 0 or 
re. The phase difference between the two atoms is 0 
for the acoustic mode and rc for the optical mode. 

The differential cross section for one-phenon scat- 
tering, with the usual notion, is given by 

where 

S(K,o~)= 

d2o " k 
dOde hko 

- -  S(K, ~o) 

Nh {~(~) + 1 -T- ½ } 
4re og;(q) 

x ~ exp { -  WA}K. e(Al~) exp {i l l .  xO(A)} 

be [2 
+ ~ exp { -  We} K. e(Bl~) exp {i l l .  x0(B)} 

x 6[co-T-col(q)] 6[K-T-q-H]. (8) 

x°(A) and x°(B) represent the equilibrium position 
vectors of the two atoms A and B in the unit cell. b A 
and b e denote the coherent scattering lengths of the two 
nuclei respectively. The positive sign represents the 
phonon creation process whereas the negative sign 
represents the annihilation process. The two 6 func- 
tions represent the conservation of energy and crystal 
momentum during the scattering process. K = k - k 0  is 
the scattering vector or the momentum transfer vector. 
H is a reciprocal-lattice vector. The scattering vector 
g: associated with fI satisfies the momentum conserva- 
tion law 

R = f i + 4 .  (8a) 

From equation (8) it is clear that we can define an 
inelastic structure factor, F(K), given by 

bA 
F(K)= l/Ma exp { -  W4}K. e(Al~) exp {i l l .  x°(A)} 

be + ~ e x p  { -  We}K. e(Bl~) exp {i l l .  x°(B)}. 

Thus K .  e(Al~) and K .  e(B[~) represent the proba- 
bility amplitudes for one-phonon scattering so that 
(b,UI/MA) exp{-  WA}K . e(Al~) and (be/l/Me) x exp 

{ -  We}K. e(Bl~) may be considered as the scattering 
lengths of the two atoms for the coherent one-phonon 
scattering. 

B" 

B' .,.. 

F(H i /// / , ' •  

/ /// /,'F(") 
/ , / /  , ' 7  l / /  /-',L~ H'x°(B) 

o x 

Fig. 3. Bragg reflexion - two atom structure with atom B, an 
anomalous scatterer. OA=bA exp {-W.4}, AB=bB o × 
exp{-Wn}, BB'=b'n exp {-WB} and B'B'=b"B ×exp 
{-  Wn}; [F(n)l 4: IF(R)I. 

S 
R 

F( 
_,~_H_~O (B) 

X o 
Fig. 4. One-phonon scattering in a non-centrosymmetric struc- 

ture; normal scattering. 
ba 

OP-- I/MA exp {-- Wa}K. P, 

bA 
PQ= l~-'a exp {- WA} K. Q, 

bB 
QR = -I/~V/---B- exp { -  WB}K. R 

bB 
and RS= -iTiT7-_ exp {-- WB}K. S; [F(K)I = [F(K)I. F m u  
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4. Argand diagram representation: non-centrosymmetric 
structures 

(a) Bragg reflexion: normal and anomalous scattering 
Fig. 2 gives the Argand diagram for a Bragg re- 

flexion in a non-centrosymmetric structure containing 
two atoms per unit cell, both being normal scatterers 
for neutrons. The reciprocal-lattice vectors t t  and 
represent the reflexions from the planes (hkl) and (h[d) 
respectively. In Fig. 2 

OA=b a exp { -  Wa} and AB=b B exp { -  Wn} 

where ba and bn are the normal scattering lengths of 
the two atoms, exp { -Wa}  and exp { -Wn}  are the 
Debye-Waller factors for the two atoms. In X-ray 
crystallographic practice, it is the convention to reflect 
the Argand diagram of F(fi) about the real axis to 
facilitate the comparison of F(H) and F(H). We shall 
follow this convention in this paper. From Fig. 2, it is 
clear that IF (n ) l  = IF(f i ) l ,  leading to Friedel's law. Fig. 
3 represents the situation when the atom B in the struc- 
ture becomes an anomalous scatterer for thermal 
neutrons. The scattering length of atom B is given by 
equation (1). In Fig. 3, BB'=b'n exp { -  Wn} and B'B"= 

R" 

F(K) 

/ /  
// 

: / 

.......... ~,. s"' 
. . . .  

i / l  

H'x ° (B) 

~"~ H'x° (A) • x 
O-- 

Fig. 5. One-phonon scattering - atom B, an anomalous scat- 
terer. 

Q R -  (bB°~+b'B) exp {-- WB} K. R, 
]/ MB 

R S -  (bBO -[" b'n) - -  exp {-- WB}K. S, 
]~Ms 

S R " =  $1~"- b"s l/Ms exp { -  Ws}K. R 

and R " S " =  R " S " -  b"s ]~Ms exp { -  Ws}K. S; 

IF(K) # IF(K)I. 

Yl 
I 

I 
I 

P k_"WcZ  

x 

Fig. 6. Interaction with an optical phonon - atom B, an 
anomalous scatterer. 

hA 
OP-- ]/MA exp {-- WA}K. P, 

PR - (bB° + b'B) exp {-- WB } K . R, 
]/Me 

R R " =  R R " -  b"B ]/MB exp {-- Wn}K. R; 

IF(K)I # [F(R)I. 

b~ exp {-WB}. Since the relative phase of (bso+b'n) 
and b~ is independent of the scattering vectors H and 
H, we get [F(H)I # lF(fi)l leading to the breakdown of 
Friedel's law. 

(b) Coherent one-phonon process: normal scattering 
For a general q, the two atoms in the unit cell 

describe elliptic motions. We write the eigenvectors of 
the two atoms as 

and e(A[~) = P + iQ ] 

e ( B I ~ ) = R + i S . .  (9) 

[Pl] [ql] Irl] I,S1 ] 
P =  P2 , Q =  q2 , R =  r2 a n d S =  s2 . 

P3 q3 r3 3 

P, Q, R and S are real vectors and thus twelve com- 
ponents are required to describe completely their 
elliptic motions. The polarization vector, V(~), which 
is normalized to unit magnitude is a column matrix 
given by 

P2 + iq2 
V(~) = P3 ÷ iq3 

rl + is1 " 
r2 + is2 
r3 ÷ is3 

A C 27A - 3 
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The complete enumeration of these twelve components v 
gives us the relative amplitudes and phases of the two 
atoms in the unit cell. The initial phase of the elliptic 
motion is determined by the magnitude of the inter- 
atomic forces and hence cannot be determined by sym.. 
metry considerations. From equation (9), we get 

K.  e(AI~)=K. P +exp {izt/2} K.  Q 
and K.  e(BI~)=K. R + e x p  {iz~/2} K . S .  (10) 

Fig. 4. represents the Argand diagram for one-phonon 
scattering. F(K) represents the structure factor for 
coherent one-phonon process corresponding to the 
point defined by K on the 'scattering surface'. From the 
relation (8a), it is clear that the point defined by K on 
the scattering surface is associated with the lattice 
wave of wave-vector ~1. For el, the eigenvectors of the 
two atoms are complex conjugates of the corresponding 
quantities for q, signifying that the sense of description o 
of the ellipse will now be in the opposite direction. 
That is 

e(A ]~) = P - i Q  ]. 
(11 ) 

and e ( B I ~ ) = R - i S .  ] 

Thus the structure factor for K is the complex con- 
jugate of that for K so that the intensity is equal at 
these two points on the scattering surface. 

q 

q 

(b) 

(a) 

Fig. 7. Schematic diagram of the momentum conservation 
law (a) general case IKI ~ [K'I, (b) special case [K[ = IK'I. 

. . . .  X' 
, m ~  X '  

Fig. 8. One-phonon  absorpt ion and emission processes near  a 
reciprocal-latt ice point  - eigenvectors real. 

ba 
OP- I,/M A exp {-  WA}K. P, 

bB 
pR= 7MTexp (-WB}K. R, 

bA 
OP'-- ]/M.4 exp { -  WA }K' .  P, 

bB 
P ' R ' -  e x p { -  WB}K' R" 

I/MB • , 

XOP= H. x0(A), X'PR=X'P'R'=H. x0(B); 

IF(H, q)l 4: I F(H,/I)I. 

(c) Coherent one-phonon process: anomalous scattering 
The presence of anomalous scattering causes an 

intensity difference at the points defined by K and g~ 
on the scattering surface. Fig. 5 gives the Argand 
diagram for the one-phonon process where atom B is 
an anomalous scatterer. The elliptic motion of the 
atom B gives rise to two scattering lengths for coherent 
inelastic scattering as represented by QR and RS in the 
Figure. Associated with each of these scattering lengths 
there will be a component due to anomalous scattering 
ahead in phase by re/2. Thus, in the Argand diagram, 
SR" and R"S" are the two anomalous scattering 
lengths associated with QR and RS respectively. From 
the diagram one sees that up to the point S, there is 
symmetry between K and ~ reflexions. For the re- 
flexion K, the components RS and SR" add as they 
are in the same phase whereas for K, the component 
RS is subtracted from S/~" as they are in opposite 
phases. A similar asymmetry occurs for the component 
R"S" also. That is IF(K)# IF(g01. The expressions for 
the intensity at K and g, on the scattering surface can 
be written down from the Argand diagram. Apart 
from a constant factor, we have 



T. G. RAMESH AND S. R A M A S E S H A N  337 

I(K)= bj -~-A exp { -2Wa} {(K. P)2+(K.  Q)2} 

+ exp {-2WB} 
. . . . .  MB [{(bBo+b'B)K'R-b 'BK'S}Z 

+ {(bso+b'B)K. S+b~K.  R} 2] 

2 e x p { - ( W  a + Ws)} + 
~/~tA M B 

x [bA{(bBo+b'B)K. R - b ~ K .  S} 

× {K. P cos H .  x°(B)-x°(A) 

+ K.  Q sin H .  xO(B)-xO(A)} 

- bA{(bBo+b'n)K. S + b ; K .  R} 

0 x 

Fig.  9. O n e - p h o n o n  a b s o r p t i o n  a n d  emis s ion  p rocesses  nea r  
a reciprocal lattice point - eigenvectors complex. 

b.4 
O P -  ~/MA exp {- WA}K. P, 

bA 
OP'-- VM a exp {-  WA}K" . P, 

ba 
PQ = VM--a-a exp {- W.4}K. Q, 

bA 
P'Q' -  VM A exp {- WA}K'. Q, 

bB 
QR= ~ M B  exp {-- WB}K . R, 

bB exp{-- WB}K' R, Q'R' -  [/MB 

bB 
RS= V-M-B-n exp {-  WB}K . S, 

bB 
R'S'-- ]/MB exp {-  WB}K' . S; 

XOP= H.xO(A), X'OR=X'O'R '=H.x°(B);  

I F(n,q)l # IF(H,~I)I. 

AI= 

x {K. P sin H .  x°(B)-xO(A) 

- K.  Q cos H .  xO(B)-xO(A)}], 

I(K) - I ( K ) =  4 exp { - ( W a  + WB)}_ 

x bab~[K. R{K. P sin H .  xO(B)-x0(A) 
- K.  Q cos H .  x°(B)-x°(A)} 
x K.  S{K. P cos H .  x°(B)-x°(A) 
+ K.  Q sin H .  x°(B)-x0(A)}]. 

Choosing a second wavelength for the incident thermal 
t / t  neutrons so that the dispersion terms bB and bn are 

altered and repeating the experiment at K and g~, we 
get two more independent equations. This is true only 
if the value of b'~/(bBo+ b'n) is not the same for the two 
wavelengths. From these four independent equations, 
the unknowns K.  P, K.  Q, K.  R and K.  S can be 
found. Now we consider the inelastic scattering near 
other reciprocal-lattice points corresponding to the 
interaction with the same phonon (i.e. phonon of same 
energy and q). Repeating the experiment for two dif- 
ferent scattering vectors, we obtain twelve independent 
equations from which all the components of P, Q, R 
and S can be extracted. Thus the determination of the 
real and imaginary components of an eigenvector is 
equivalent to solving the 'phase problem' associated 
with the initial phase of the elliptic motion. 

(d) Interaction with an optical phonon 
For the optical phonon with q=  0, the initial phase 

difference between the two atoms is re. The eigen- 
vectors are real for this mode for all crystal structures. 
Fig. 6 gives the relevant Argand diagram. The expres- 
sions for the intensity at K and K get considerably 
simplified if the eigenvectors are real. From Fig. 6, 

I(K)= ~ exp { - 2 WA } (K. p)2 

+ exp { -2Ws}  {(bBo+b,B)Z+(b,~)2} (K R) 2 
MB 

+ 2 exp {- (WA+Wn)} bA(bso+b,B) 

x K.  R K.  P cos H .  x°(B)-x°(A) 

- 2 exp {--(WA + Ws)} bAb'~ 
]/&tAM . 

x K.  R K.  P s i n H .  x°(B)-xO(A), 

AI= I ( g 0 - I ( K ) = 4  exp { - ( W  A + WB) } 
]/~tA M B 

x bAb'~ K. P K.  R sin H .  xO(B)-xO(A). 

Since K.  P and K.  R are the only two unknowns, 
measurement at one wavelength determines them. 
Choosing two different scattering vectors and con- 
sidering the interaction with the same phonon, the six 

A C 27A - 3* 
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components characterizing the vectors P and R can be 
extracted. Thus, in cases, where the vibrations are 
linearly polarized (real eigenvectors) expressions for 
I and AI get considerably simplified and only six 
measurements are required to characterize the polar- 
ization vector. 

(e) Coherent one-phonon absorption and emission pro- 
cesses near a reciprocal lattice point 
(i) Eigenvectors real 

The phonon creation and annihilation processes 
near a reciprocal lattice point defined by H are char- 
acterized by the conservation laws, 

K = k - k 0 = q + H  

K ' = k ' - k 0 = ~ l + H .  

A schematic diagram expressing these momentum con- 
servation laws is given in Fig. 7(a). It is clear from the 
diagram that the scattering vectors corresponding to 
phonon creation and annihilation processes, are dif- 
ferent. That is [KI is different from ]K'[ and differently 
oriented with respect to the eigenvectors so that the 
cross sections at the points K and K' on the scattering 
surface are different. 

The intensity for K and K' reflexions (see Fig. 8) are 
given by the equations 

I (K)= b~, -~--A exp { - 2 W a }  ( K . P )  2 

b 2 
+ _~_n-exp{-ZWn} (K. R) z 

MB 

+ 2 bAbB exp { - ( W a  + W~)} 
VMaMs 

× K.  P K.  R cos H .  x°(B)-x°(A),  

I(K') = bz ~-fa  exp ( - 2 W a }  (K' .  p)2 

b~ exp{ -  2 Ws} (K' R) z + 

+ 2 babs exp { - ( W  a + WB) } 
I/MA MB 

x K ' .  P K ' .  R cos H .  x° (B) -x° (A) .  

Making use of the momentum conservation laws, we 
get 

AI= I ( K ) - I ( K ' ) = 4  b] exp {-2WA} MA q .  P H . P  

+ 4 b~ exp {-2WB} 
M s  - - q .  R H . R  

+ 4 babB exp { - ( W  a + Wn) } 

VM., MB 
x {H. Pq .  R + q .  P H .  R} cos H .  x° (B) -x° (A) .  

AI=O only when H .  P = H .  R = 0  or q .  P = q .  R = 0 .  

?\ 
N ~y 17  M 
/ \ /  

f 

B1 

B2 

Fig. 10. One-phonon scattering in a centrosymmetric struc- 
ture - normal scattering. 

b 
OAt = OA2= ~ - e x p  {-  W}K. A, 

b AIBI= AzB2= - ~  exp {-- W}K. B, 

2b 
OM= - - ~  exp { -  W}K. A cos H.  x, 

2b 
MN= ~-M- exp ( -  W}K. B sin H.  x. 

Table 1. Components of  the polarization vector and the mode of  extracting them by anomalous neutron scattering 

2 Centro- 
symmetric 

3 Bravais 
lattice 

Number of components Number of wave- Number of scattering 
Number of atoms of the lengths to be vectors for 

per unit polarization used for the which experiments 
cell vector thermal neutrons are to be performed 
2 (a) 12 (elliptic 2 3 

polarization) 
(b) 6 (linear 1 3 

polarization) 
2 (a) 6 (elliptic 2 3 

polarization) 
(b) 3 (linear 1 3 

polarization) 
1 3 1 3 

Number Structure 
1 Non-centro- 

symmetric 
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This condition corresponds to a highly symmetric case 
when the lattice wave is propagating normal to It. 
Then the intensity at the two points defined by K and 
K' is equal. This special case is given in Fig. 7(b). 
Thus one gets the result that even in rock salt-type 
structures where the eigenvectors are always real, the 
intensity for K and K' on the scattering surface should 
be different. 

(ii) Eigen-vectors complex 
When the eigenvectors are complex signifying el- 

liptic motions, we have the following relations 

e(A I~) = e*(A if) = P + iQ 

and e(Bly) = e*(B[~') = R + iS .  

y 

,4" 
B'~' f " N .  

\ 
\ 

B1 R 

,," / I" ,  
/ . , ,~x / t X 

/ ~ k / I x 

/ ~  \ \  i / 

, , y  
O ~ lq " , .  x 

/ A~" 

Fig. 1. One-phonon scattering - atom B, an anomalous 
scatterer. 

b" 
B1AI"= B2A2"= - - ~  exp {-- W}K. A, 

b" A " B " =  AI"BI "= 2 2 - - ~  exp {-- W}K. B, 

ON= 2 --(b°+b') exp {-  W} 
fM 

x [ K . A c o s H . x - K . B s i n H . x ] ,  

b tt 
NR = 2 - ~ -  exp { -  W}K. A cos H .  x, 

b" 
NS= 2 - - ~  exp { -  W}K. B sin H .  x; 

IF(K)I = I F(R)I. 

Thus for the phonon absorption process, the imaginary 
component K.  Q leads the real component K.  P in 
phase by re/2 while for the emission process K ' .  Q lags 
K ' .  P in phase by re/2. Then the intensity difference 
between K and K' reflexions arises from two causes. 
Firstly, the scattering vectors for the two processes 
are different and hence the cross sections are different. 
There is a further intensity difference, owing to the 
elliptic motions of the atoms. Fig. 9 represents the 
Argand diagram for phonon absorption and creation 
processes when both the atoms in the structure are 
describing elliptic motions. 

As noted earlier, determination of the polarization 
vector requires measurements to be made for three 
different scattering vectors. Since the phonon absorp- 
tion and emission processes around a reciprocal-lattice 
point correspond to two different scattering vectors, 
measurements around two reciprocal-lattice points, 
are sufficient for the determination of the polarization 
vector. 

5. Centro-symmetric structures 

(a) Coherent one-phonon process: normal scattering 
Consider a centrosymmetric structure with two 

atoms per unit cell, where the centre of inversion does 
not coincide with the atomic positions. Under the 
influence of a lattice wave, except in symmetry direc- 
tions, the two atoms describe motion along identical 
ellipses but in opposite sense. That is, the eigenvectors 
for the two centrosymmetrically-related atoms, are 
complex conjugates of one another. 

e(~cl~) = e*C~l~) 

where x and ~ are the two centrosymmetrically related 
atoms in the unit cell. Let x and ~ denote the equili- 
brium position vectors of these two atoms. We write 

e(tc[~) = A + iB.  

Fig. 10 represents the Argand diagram for coherent 
one phonon process in a centrosymmetric structure 
when both the atoms are normal scatterers for neutrons. 
The scattering lengths (b/l/M) exp { -  W}K. A corre- 
sponding to the real part of the eigenvector can be 
added for x and ~ atoms, to give the resultant scat- 
tering length OM along the real axis. The components 
(b/i/M) exp { -  W}K. B which arise owing to ellipti- 
city can again be added for tc and ¥ atoms to give the 
resultant M N  along the real axis which is opposite in 
phase with respect to OM. Further the same diagram 
holds good for the reflexion K also, because K.  x =  
K .  ~ and K .  ' ~ = R .  x and IKI =IKI. That is IF(K)I = 
IF(R)I 

I(K)=I(g,)= 462 - ~ -  exp { - 2  W} [K. A cos H .  x 

- K.  B s i n H .  x] 2 
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where b represents the normal scattering length of the 
atom. 

(b) Coherent one-phonon process: anomalous scattering 
The ellipses characterizing the motions of the two 

atoms being identical, only six components are re- 
quired to characterize the polarization vector. For the 
reflexion K associated with the phonon wave-vector q, 
one has to add the contributions of both the centro- 
symmetrically related atoms. This leads to perfect sym- 
metry between K and K reflexions, so that the intensities 
at these two points on the scattering surface are equal 
even for anomalous scattering. Fig. 11 gives the Argand 
diagram for a centrosymmetric structure in the pres- 
ence of anomalous scattering. The various scattering 
lengths for tc and/F atoms can be added so as to give a 
scattering length along the real axis and another com- 
ponent along the imaginary axis. From Fig. 11, 

I(K) =I(I~) = 4 (b°+b')Z M exp { - 2 W }  

x { K . A c o s H . x - K . B s i n H . x }  2 

+ 4 ~ e x p  { - 2 W }  

x { K . A c o s H . x - K . B s i n H . x }  z. 

Choosing another wavelength for the incident thermal 
neutrons so that the dispersion terms b' and b" are 
altered and repeating the experiment, we arrive at two 
independent equations from which K.  A and K.  B 
can be determined. The same procedure is followed for 
two different scattering vectors corresponding to the 
interaction with the same phonon. From these six 
measurements, we can solve for the six components of 
A and B. 

(c) Coherent one-phonon absorption and emission pro- 
cesses near a reciprocal-lattice point 

Fig. 12 gives the Argand diagram representation of 
the phonon absorption and emission processes near a 
reciprocal-lattice point. The intensity difference at the 
points defined by K and K' is again associated with the 
change in scattering vectors as well as the ellipticity 
of the motions of the two atoms. In Fig. 12, ON 
represents the structure factor F(K) which is obtained 
by addition of the scattering lengths for the two 
centrosymmetrically related atoms. Similarly OT re- 
presents the structure factor F(K'). From Fig. 12, 

A I = I ( K ) - I ( K ' ) = 4  
b z exp { - 2 W} 

M 

x [{K. A c o s H .  x - K .  B s i n H .  x} 2 

- {K'.  A cos H .  x +  K ' .  B sin H .  X}2]. 

As in the non-centrosymmetric case, the two scattering 
vectors corresponding to the phonon absorption and 

creation processes can be effectively made use of in the 
determination of the polarization vector. 

(d) Bravais Lattice 
In the case of a Bravais lattice which has one atom 

per unit cell, the eigenvector being real, is linearly 
polarized so that only three components are required 
to describe the polarization vector. The measurement 
of intensity for three different scattering vectors is suf- 
ficient to characterize the polarization vector. The 
Argand diagram for the coherent one-phonon scat- 
tering in a Bravais lattice is very much simplified as 
only one real scattering length is involved. 

Table 1 summarizes the discussion giving the com- 
ponents of the polarization vector and the mode of 
extracting them by anomalous neutron scattering. 

B1 

A ~  ~ 
, - -  

0 x 

A s S 

S ~ 

s S 

B2 

Fig. 12. One-phonon absorption and emission processes near 
a reciprocal-lattice point - centrosymmetric structure; 
eigenvectors complex. 

b 
OA1= OAz= - ~ e x p  {-  W}K. A, 

b 
OAI'= OA2" = -i/- ~-  exp { - W}K'. A, 

b 
AIB1 = A2B2 = ~ - e x p  { -  W}K. B, 

b 
AI"BI"= A2'B2 ' =  -~-~ exp {-- W}K'. B, 

b ON= 2 ~ exp ( -  W} 

x [ K . A c o s H . x - K . B s i n H . x ] ,  

b OT= 2 ~ e x p { - W }  

x [ K ' . A c o s H . x + K ' . B s i n H . x ] .  
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Conclusion 

The determination of the polarization vectors seems 
to involve a number of experimental problems (see 
for example, Dolling & Woods, 1965; Brockhouse, 
1964). The recent evaluation of the polarization vector 
of the ferroelectric soft mode in KD2PO4 by Skalyo, 
Frayer & Shirane (1970) is of some interest in this con- 
nexion. It is not possible to foresee all the obstacles 
that may be encountered when the anomalous scat- 
tering technique as proposed in this paper is used for 
determining the polarization vectors. It may be neces- 
sary to use lower concentrations of the anomalously 
scattering isotope in the specimen. However, in view 
of the inherent directness of this method, it appears 
worth while pursuing this experimental approach. 

The authors wish to thank Mr Rajaram Nityananda 
for the discussions they had with him. 
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The Performances of Neutron Collimators 
I. Accurate Transmitted Intensity Evaluations for Neutron Collimator Systems 
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Limitations imposed by the geometry of Soller collimator systems on luminosity and resolution of neu- 
tron diffraction equipment are studied on the grounds of angular and spatial distribution of neutrons. 
Transmission functions for collimator systems of arbitrary complexity are derived. The influence of the 
mutual distances among the various components of the experimental set-up on the shape of transmission 
functions is given in evidence. Careful intensity measurements performed with well diversified arrange- 
ments of Soller collimators are in fair agreement with our theoretical results. The way to improve the 
performances of neutron diffraction equipment by a proper choice of all the geometrical parameters 
is shown. 

1. Introduction 

The influence of collimator parameters (typically the 
angular divergence) on luminosity and resolution of 
single or multi-axis neutron spectrometers is usually 
derived on the basis of Sailor's hypothesis (Sailor, 
Foote, Landon & Wood, 1956; Caglioti, Paoletti & 
Ricci, 1958, 1960; Caglioti & Ricci, 1962; Popovici & 
Gelberg, 1966). Sailor et al. (1956) assume that col- 
limator transmission functions can be conveniently 
described by a Gaussian function n(tp), where (p is the 
angle between the projection of any individual neutron 
trajectory on a horizontal plane and the collimator 
centre line; the full width at half maximum of the 

Gaussian distribution is the angular divergence of the 
collimator. 

Nevertheless neutron sources and collimators are 
quite sizeable, so that a more correct approach should 
take into account the dependence of transmission 
functions not only on direction but also on position of 
any individual neutron. In this last way Szab6 (1959) 
and Jones (1962) worked out relations on intensity and 
parameter optimization limited to a single (primary) 
collimator, and Carpenter (1963) discussed a more 
general approach to the problem, giving a graphical 
representation of collimator transmission functions. 

In the following sections we derive general transmis- 
sion functions for neutron collimator systems, taking 


